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SUMMARY 

The algorithm introduced in Part I of this paper is applied in its explicit form to a variety of problems in 
order to demonstrate its wide range of applicability and excellent performance. Examples range from nearly 
incompressible, viscous, flows through transonic applications to high speed flows with shocks. In most 
examples linear triangular elements are used in the finite element approximation, but some use of quadratic 
approximation, again in triangles, indicates satisfactory performance even in the case of severe shocks. 

KEY WORDS: compressible flow; CFD (computational fluid dynamics); finite elements in fluids 

1. INTRODUCTION 

In this part of the paper we shall illustrate on a number of examples the accuracy and generality of 
the new algorithm presented in Part I,' when used in the explicit form. The explicit form is of 
considerable importance as: 

(i) its simplicity makes the computation comparable to other algorithms currently employed 
and thus allows similar use of adaptivity, remeshing and convergence acceleration proced- 
ures (e.g. multigrid techniques); 

(ii) in the explicit form, the calculation of Ap is made directly and no iterative approximation is 
necessary. 

Although full transient solution of incompressible flow problems requires the implicit form of the 
algorithm, steady-state incompressible flow problems can be solved by simply assuming an 
artificial compressibility (or the speed of sound) at any convenient value. This does not introduce 
any additional approximation, but leads to a decoupling of the energy equation. 

As mentioned in the previous paper (Part I), the explicit algorithm can be used in its full 
two-step form or it can be simplified (approximated) by a single-step operation. The difference in 
computational cost is small, the single-step scheme being slightly cheaper. Preliminary tests show 
that both forms are acceptable in practice, in subsonic flow, but for supersonic flow problems, the 
two-step scheme has been found to give a more stable and accurate result. Thus for all the results 
presented the two-step scheme has been used. 

CCC 027 1-209 1/95/080887 - 27 
0 1995 by John Wiley & Sons, Ltd. 



888 0. C. ZIENKIEWICZ ET AL.  

Although the algorithm has a much improved behaviour pattern when compared, for instance, 
with Taylor-Galerkin and similar alternatives, and can recover mild shocks without additional 
remedies, for some of the strong shock problems we use either the shock capturing algorithm 
discussed in Part I or the one described in Reference 2, viz. the pressure switch method. 

The general form of the algorithm allows any suitable spatial finite element approximation to 
be made and in some examples we have used, with success, quadratic shape functions. In a future 
paper, the use of such higher-order elements will be more fully explored. 

2. THE EXPLICIT ALGORITHM-AN ESSENTIAL SUMMARY 

We recall the essential form of the algorithm in its semi-discrete form before application of 
a standard Galerkin space approximation. The details of this space approximation are given in 
Reference 1 and follow the standard pattern described in many texts3 

As we are concerned here, in the explicit form, with the parameter O2 = 0, this value if directly 
used and, for clarity, we have omitted source terms. However, the parameter is left in the 
equations given below, with its value being in the range 

112 G el G 1 

as a necessary stability requirement-the value of one-half being used in the examples. Equations 
(31), (33), (32) and (40) in Reference 1, rewritten now in the semi-discrete, characteristic Galerkin 
form, define the main solution sequence ( g i  = 0 is assumed). 

Thus from equation (31) 

( U i . 1 1 ~  
ar i j  At a 2  

a x j  2 k a x k a x j  + - + - u  - 

From equation (33) 

At01 - axi  a 2 p  axi In au, aAr7;: 
[ a x i  axi 

A p =  - A t  - + e l - - -  

From equation (32) 

And finally from equation (40) (rewritten in time discrete form using the characteristic Galerkin 
procedure) 

a (u~P) - - ( ~ i j u j )  
axi 

In the above equations, ui denotes velocities, Ui ( = pui)  mass fluxes, p pressure, p density, E the 
energy per unit volume and T the absolute temperature. 

For an ideal gas, the equation of state 

p = p R T  ( 5 )  
is necessary to close the system and to evaluate the pressure at  t n + l .  Standard Galerkin 
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approximation is optimal for the spatial discretization of the equation system (1)-(4) and the 
details can be found elsewhere.' 

Starting from known initial conditions at time n, the increments of the problem variables can be 
found sequentially by a three-step operation. In this 

1. the j r s t  step consists of solving equation (1) for A G  and 
2. the second step solves equations (2) and (3) for Ap and A Q ,  respectively, using values of A o i  

3. the third step A ( p E )  is calculated form equation (4) as a transport quantity. 

In each of these steps it is necessary to obtain the discretized solution by solving a mass matrix 
system M. This, as is now conventional, is formally avoided by diagonalizing (lumping) this 
matrix and performing a well-known iterative correction. In Figure 1, we show the.form lumping 
has, for linear and quadratic  element^.^ The single-step operation involves the omission of the 
term a A a / d x i  from equation (2). If this is done, the value of-AC need not be determined and 
equations (1) and (3) are combined in a single statement saving a small amount of computer 
operation and time. 

determined in the first step. 

Thus we now approximate equations (1)-(3) by 

leaving equation (4) unchanged. 

3. SPECIALIZATION FOR INCOMPRESSIBILITY 

Although the algorithm avoids the interpolation restrictions of the BB condition as shown in Part 
I, full incompressibility, of course, cannot be dealt with by the explicit form in which a finite speed 
of sound is assumed if transient computation is required. However, for steady state if we replace 
Ap in equation (2) or (6) by 

and further if we keep p as constant in ensuing computation (thus avoiding the equation of state 
(5 ) ) ,  we note that 

the energy equation becomes decoupled, and that 
when steady state is reached (and Ap = 0), the solution is independent of the velocity of 
sound c, and thus any convenient value can be chosen for this. 

1/12 

1 .  Lumping parameters for linear and quadratic triangles (the last obtained by subdivision into elementary linear 
triangles) 
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Thus solving the incompressible flow situation in the manner described above, requires a very few 
modifications to the basic code. The vector of unknowns now becomes 

and the solution of step I1 is expressed as 

(4 C M + At'B,B,H) @) = - [Q{ui)" + 81(Au"i)} + At8,Hp"l 

where 

M = jn NTN dR 

However, for fully incompressible flow problems c -, GO and equation (13) can be solved only if 
At28,8,H(Ap/At) is not ignored; i.e. for fully incompressible flow problems only a semi-implicit 
form can be used. However, if one is interested only in the steady-state results, one could use an 
artificial compressibility (a finite speed of sound) and still use the fully explicit form of equation 
(lo), omitting the Laplacian term on the left-hand side. Even though the steady-state result does 
not depend on the value of c assumed, it is reasonable to assume a high value of c (Mach 
number N 0.2 is convenient). 

4. THE TIME INCREMENTS 

For every element the critical time step 
using equation (19) of Part I. Similarly, A&, corresponding to sonic speed is evaluated. 

corresponding to the convective terms is calculated 

Without viscosity, the orders of magnitude of these steps are 

For fully transient computations the minimum value of these time steps will determine the 
maximum At that can be used with stability. However, if the determination of steady-state 
solution only is desired, so-called local time stepping could be adopted. This device conventionally 
used simply determines, at  each node, the minimum value of or At',:!, and uses it at  that node 
together with a lumped mass matrix (which of course does not change the accuracy of the final 
solution). The use of local time stepping is, of course, totally equivalent to using a constant time 
step throughout the whole domain and adjusting the mass matrix coefficient suitably. 

Again if steady state only is sought, it is convenient to determine the 'interior At*' (that 
occurring inside the square brackets of equations (1)-(4)) on a basis leading to optimal steady- 
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state results. This has been determined elsewhere3 by comparison of the Petrov-Galerkin and 
characteristic Galerkin procedures as requiring that 

h 
Iu I 

At* = - 

(in the absence of viscosity) or generally 

At* = (16) 

5. NUMERICAL EXAMPLES 

In order to study the performance of the algorithm, the present scheme has been applied to 
a variety of problems in its fully explicit form. First, however, a comparison of the performance of 
the two versions of the scheme, namely, the version with the intermediate step and the version 
without the intermediate step, has been carried out. Later, a variety of problems, both in subsonic 
and supersonic regimes, have been dealt with. A slightly modified version of the code has been 
used for validating the scheme for incompressible flow problems. 

5.1. Comparison exercise 

These examples are to study the performance of the two schemes discussed in Part I, viz. the 
scheme with the intermediate step (also referred to in this paper as scheme I) and the scheme 
without the intermediate step (also referred to in this paper as scheme 11). For this purpose, 
subsonic inviscid flow at a Mach number 0.5 and angle of attack 0" past a NACA0012 aerofoil is 
first considered. Figure 2(a) shows the mesh used which consists of 969 nodes and 1824 elements 
and Figure 2(b) shows the mesh refinement near the aerofoil surface. The time evolution of 
non-dimensional density at the leading edge of the aerofoil is plotted in Figure 2(c) for both the 
schemes. It is observed that there is little or no difference in the behaviour of the two schemes. In 
either of the schemes At(inierior) # and they are given as below: 

At(exierior) = B A t 2 i  

(where B is a safety factor - 0.9) 

Atlinterior) = ~ t % t  

It is also observed that both the schemes converge to the same result and also the time taken 
(CPU requirement) is almost the same, with scheme I1 being slightly cheaper. 

A further study of the scheme with the intermediate step has been made by considering the 

= flAtlt!t the time taken to reach the steady state is longer than that for the case of 
At(interior) # At~ex,erior). This is shown in Figure 2(d). However a significant difference in the 
steady-state values is observed for the two cases as indeed may be expected with the use of 
non-optimal upwind parameters implied by the external time step and indeed the second option 
is most accurate. 

To further check the performance of the two schemes, supersonic flow past NACA0012 with 
Mach number 1.2 and angle of attack 0" has been considered. The mesh used for this problem is 
shown later in Figure 6. Unlike in the previous example, here a larger difference in the 
performance can be observed. The time evolution of density at the leading edge has been plotted, 
once again, for both schemes and is shown in Figures 3(a) and 3(b). Scheme I1 shows oscillations 

cases of At(interior) = At(exterior) and At(interior) # At(exterior). As expected when At(inierior) = 
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Figure 2. Subsonic inviscid flow past NACA0012 aerofoil with M ,  = 0.5 and a = 0": (a) mesh for the comparison exercise 
(no. of nodes = 969, no of elements = 1824); (b) mesh refinement near the surface of the aerofoil; (c) time evolution of 
density at leading edge for the two schemes; (d) effect of At terms on the performance of scheme I. (. . . . .) 

( 2 ) .  
Atinterior = Atexterior = Armit, (-) Atinterior = At% and Atexterior = b'At% 

even though the final (mean) result is nearly the same as that given by scheme I. In view of these 
findings, for all the subsequent problems only scheme I (with different At's for steady state) has 
been used. 

To compare the present results (for M = 0.5) with those obtained by the Taylor-Galerkin 
(T-G) scheme, a code based on the latter has also been run on the same mesh. Figure 4(a) and 4(b) 
show the pressure contours with the T-G scheme with an artificial viscosity(C,) of 0 and 0.5, 
respectively, and Figure 4(c) shows the results with the present scheme (with no artificial 
viscosity). In all these figures, the right side ones show the pressure contours on an enlarged scale 
near the leading edge. It may be observed that the oscillations near the leading edge of the aerofoil 
for C, = 0.0 are not present when the present scheme is employed. Similarly, Figures 5(a) and 5(b) 
show the density contours obtained by the T-G scheme near the leading edge with C ,  = 0.0 and 
C,  = 05, respectively, and Figure 5(c) shows the same with the present scheme. Once again 
a comparison of these three figures reveals the superiority of the present scheme. Figure 5(d) 
shows a plot of density along the stagnation line of the above three results. Table I shows the 
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Figure 3. Supersonic inviscid flow past NACA0012 aerofoil with M ,  = 1.2 and a = 0": (a) time evolution of density at 
leading edge with scheme I; (b) time evolution of density at leading edge with scheme I1 

comparison of different non-dimensional flow variables at the leading edge of the aerofoil 
obtained with the present scheme (C,  = O.O), T-G scheme (C, = 0.5) and the analytical result. 
From the table it could be inferred that, in general, the predictions by the present scheme are 
more accurate than those of the Taylor-Galerkin scheme. 

5.2. Transonic inviscidpow past NACA0012 at 0" angle of attack 

The next problem considered is transonic flow past NACA0012 aerofoil at Mach number 0.95 
and angle of attack 0". Figure 6(a) shows the domain and grid considered and Figure 6(b) shows 
the mesh refinement near the surface of the aerofoil. The mesh consists of 3753 nodes and 7351 
elements. The inflow and outflow boundaries are situated at a distance of 12 chords from the 
surface of the aerofoil. Figure 7(a) shows the pressure contours. These follow the same trend as 
reported by AGARD working group 07.4 It may be pointed out that the results of Reference 
4 were obtained by considering 561 points on the surface of the aerofoil, while in the present study 
only 66 points were employed on the surface of the aerofoil. The fish tail shock, in which the two 
oblique shocks off the trailing edge meet the weak normal shock downstream, is reasonably well 
predicted. Figure 7(b) shows a comparison of the distribution of coefficient of pressure on the 
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(C) 

Figure 4. Subsonic inviscid flow past NACA0012 aerofoil with M ,  = 0.5 and a = 0" (pressure contours): (a) 
Taylor-Galerkin scheme with C, = 0.0; (b) TaylorClalerkin scheme withC, = 0.5; (c) present scheme with C, = 0.0 

Table I. Comparison of numerical schemes with analytical 
results (flow variables at stagnation point) 

Variable Analytical Present T-G scheme 

Density 1.1297 1.1268 0.989 13 
Pressure 3.3891 3.2195 2.9726 
Temperature 10.5 10.347 10.5186 
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(d) 
Figure 5.  Subsonic inviscid flow past NACA0012 aerofoil with M ,  = 0.5 and a = 0": (a) density contours with the TCI 
scheme with C,  = 0.0; (b) density contours with the T-G scheme with C, = 0 5 ;  (c) density contours with present scheme 

with C ,  = 0.0 (d) variation of density along stagnation line 

surface of the aerofoil with the results given in Reference 4. It can be observed that there is a good 
agreement between the two results over most of the surface. Also plotted is the result obtained 
with the T-G scheme with the same mesh and with C, = 05. In the present scheme a C,  = 0.25 
has been used to avoid small oscillations in the shock region. The present result is in excellent 
agreement with the T-G scheme. 
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(a) 

Figure 6. Transonic and supersonic flows past NACA0012 aerofoil (a) overall mesh: no of nodes = 3753, no of 
elements = 7351; (b) mesh refinement near the surface of the aerofoil 

5.3. Subsonic flow past NACA0012 at 1.2" angle of attack 

The mesh employed for this problem is the same as that for the transonic flow case. A Mach 
number of 0.85 and an angle of attack of 1.2" are prescribed. An artificial viscosity with C ,  = 0.25 
has been used. A far-field vortex correction is employed to account for the effect of circulation on 
the far-field boundary conditions very much in the same way as done in Reference 4. Figure 8(a) 
shows the pressure contours and Figure 8(b) shows Mach number contours. Figure 8(c) shows 
a plot of the entropy deviation contours. A maximum entropy deviation of 0.5883 has been 
observed at the iocation of the shock on the suction side of the aerofoil. This is shown in Figure 
8(d). Figure 9(a) shows the adaptive mesh obtained from the original result. The methodology for 
adaptivity is based on the first derivative error measure and details can be obtained from 
Reference 5. An improvement in the shock details can be seen in Figure 9(b) as a result of the 
adaptivity. Figure 10(a) shows a comparison of coefficient of pressure along the two sides of the 
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Figure 7. Transonic inviscid flow past NACA0012 with M ,  = 0.95 and a = 0": (a) pressure contours with the present 
scheme; (b) comparison of pressure coefficient on aerofoil surface with other results 

aerofoil with the present scheme with the original mesh and that of Reference 4. Also shown in 
Figure l q a )  is the result obtained by Hassan et ~ l . , ~  with the same mesh. While on the suction side 
the present result and that of Reference 6 seem to agree with each other and differ from that of 
Reference 4, on the pressure side all the three results seem to differ from one another. Especially, 
discrepancy is observed at the locations of the shock fronts. Part of the discrepancy could be 
attributed to the errors in reproducing the result of Reference 4 from their plots. A further 
improvement in the results is obtained with adaptivity and is shown in Figure lqb).  The 
following are the values of coefficient of lift (C,) and coefficient of drag (C,) obtained by the 
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Figure 8. Inviscid flow past NACA0012 with M, = 0.85 and a = 1.2": (a) pressure contours; (b) Mach number contours; 
(c) entropy deviation contours; (d) entropy deviation plot on the surface of the aerofoil 

present method: 
CL = 0.3437, CD = 0.5234 

5.4. Supersonic inviscid flow past NACAOO12 at 0" angle of attack 

The last aerofoil problem considered is the case of supersonic inviscid flow past NACA0012 
aerofoil with Mach number 1.2 and 0" angle of attack. The same mesh as in the previous two cases 
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(b) 

Figure 9. Adaptive results for inviscid flow past NACA0012 with M ,  = 0.85 and a = 1.2": (a) mesh: no of nodes = 2822, 
no. of elements = 5512; (b) pressure contours 

has been again used for this case. Some artificial viscosity (C,  = 0.25) has been used. Figures 1 l(a) 
and l l(b) show the pressure contours and Mach contours. A bow shock in the front and two 
oblique shocks off the trailing edge are captured well. Figure 1 l(c) shows a plot of the coefficient 
of pressure along the surface of the aerofoil. Good agreement can again be observed with 
Reference 4. The adaptive mesh for this problem is shown in Figure ll(d) and the pressure 
contours and Mach number contours with adaptivity are shown in Figures ll(e) and ll(f) 
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Figure 10. Inviscid low past NACA0012 with M ,  = 0.85 and ct = 1.2": (a) C, distribution with the original mesh; (b) 

C, distribution with the adaptive mesh 

respectively. A much sharper shock is, of course, observed in these two figures. It is of interest to 
observe that the effect of adaptive refinement on the aerofoil pressure distribution is here 
negligible. 

5.5. Supersonic inviscid flow past a circular cylinder 

Figure 12(a) shows the mesh used for the problem of inviscid flow past a circular cylinder at 
a Mach number 2.0. Only 1/4 of the geometry has been considered. The mesh consists of 987 
nodes and 1845 elements. An artificial viscosity of 0.25 has been used for this case. Also the 
Taylor-Galerkin scheme with C, = 0.50 has been applied for the same geometry. Figure 12(b) 
shows the pressure contours for this case. The adaptive mesh is shown in Figure 12(c) and the 



COMPRESSlBLE AND INCOMPRESSIBLE FLOW PART 11 90 1 

Figure 11.  Supersonic inviscid flow past NACA0012 aerofoil with M ,  = 1.2 and a = 0": (a) pressure contours; (b) Mach 
number contours; (c) comparison of coefficient of pressure with other results; (d) adaptive mesh: no. of nodes = 1920, no. 
of elements = 3728; (e) pressure contours with the adaptive mesh; (f)  Mach number contours with the adaptive mesh 

resulting pressure contours are shown in Figure 12(d). The adaptivity, once again, is seen to result 
in a sharper shock in front of the cylinder. Figures 12(e) and 12(f) show the Mach number 
contours with the original mesh and the adaptive mesh, respectively. A comparison of the 
coefficient of pressure obtained by different methods is shown in Figure 12(g). It may be observed 
that the shock layer as predicted by the present scheme (with the original mesh) is slightly sharper 
than that obtained by the Taylor-Galerkin scheme. 

5.6. One-dimensional steady shock problem-linear and quadratic elements 

This example is to illustrate the application of higher-order elements for the present scheme. 
The one-dimensional geometry is modelled as a special case of a two-dimensional problem with 
an array of linear or quadratic rectangular elements in the X-direction. The following set of values 
have been prescribed at the inlet and outlet: 

Injow (supersonic) Outj7ow (subsonic) 
Density: 1.0 Density: 2.66667 
Temperature: 6.2306 x 
X-velocity: 1.00 
Y-velocity: 0.0 
Mach number: 2.0 
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Both linear rectangles (with 80 nodes and 39 elements) and quadratic rectangles (with 81 nodes 
and 13 elements) have been used for the discretization although the problem is one-dimensional. 
The shock capturing technique described in Reference 1 has been used in this case. After the 
steady shock is obtained, various parameters have been plotted along the length of the geometry 
to illustrate the results. Figures 13(a) to 13(d) show the pressure variation along the axis with and 
without using the shock capturing technique described in Part I. The upper figures show the 
performance with linear rectangular elements and the bottom figures show the performance with 
quadratic rectangles. Similarly, Figures 14, 15 and 16 show the variation of density, Mach 
number and temperature, respectively, along the same line. In all these figures it may be observed 
that the quadratic elements yield better results than the linear elements. Also an improvement in 
the results with the use of the shock capturing technique can be seen. 
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Figure 13. I-D steady shock problem (pressure along length of the geometry): (a) linear rectangles and with shock 
capturing; (b) linear rectangles and without shock capturing; (c) quadratic rectangles and with shock capturing; (d) 

quadratic rectangles and without shock capturing 
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5.7. Supersonic inviscid frow past a wedge-linear and quadratic elements 

This example is again designed to test linear and quadratic elements and deals with the 
supersonic inviscid flow past a 15" wedge at a Mach number 3.0. Figures 17(a) and 17(b) show the 
discretization of the domain into linear triangles (with 1621 nodes and 3099 elements) and 
quadratic triangles (with 758 nodes and 1587 elements), respectively. The following values have 
been prescribed at the inlet: 

Density: 1.0 
Temperature: 10.0 
X-velocity: 3.55 
Y-velocity: 0.0 
Mach number: 3.0 

0.8- 1 a ' s  I 1 1  
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Figure 15. 1-D steady shock problem (Mach number along length of the geometry): (a) linear rectangles and with shock 
capturing; (b) linear rectangles and without shock capturing; (c) quadratic rectangles and with shock capturing; (d) 

quadratic rectangles and without shock capturing 

Once again, the shock capturing technique of Part I has been employed in this example. 
Steady-state contours for pressure, density, Mach number and temperature are presented in the 
ensuing figures. Also, a section A-A, cutting across the geometry as shown in Figure 17, is 
considered and various parameters along the same are presented. While Figures 18(a) and 18(b) 
show the pressure contours with linear and quadratic triangular elements, respectively, Figures 
18(c) and 18(d) show the variation of pressure along the section A-A for the two types of elements, 
respectively. Similar plots for density, Mach number and temperature are given in Figures 19,20 
and 21, respectively. These figures suggest that, even in the presence of shocks, quadratic elements 
give good performance. 

5.8. lnviscid incompressible flow past NACAOOIZ aerofoil at 0" angle of attack 

All the examples considered so far have demonstrated the ability of the present scheme to deal 
with compressible flow situations ranging from subsonic flows to supersonic flows. In this and the 
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Figure 16. 1-D steady shock problem (temperature along length of the geometry): (a) linear rectangles and with shock 
capturing; (b) linear rectangles and without shock capturing; (c) quadratic rectangles and with shock capturing; (d) 

quadratic rectangles and without shock capturing 

A A 

A A 

(a) (b) 

Figure 17. Geometry for the supersonic inviscid flow past a 15" wedge with M ,  = 3.0 (a) mesh with linear triangular 
elements: no. of nodes = 1621, no. of elements = 3099; (b) mesh with quadratic triangular elements: no. of nodes = 1587, 

no. of elements = 758 
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Figure 18. Problem of Figure 17 continued (pressure): (a) contours with linear triangular elements; (b) contours with 
quadratic triangular elements; (c) distribution along the section with linear triangular elements; (d) distribution along the 

section with quadratic triangular elements 

next examples we present the results obtained by applying the present scheme to incompressible 
flow situations in steady state. The strategy for dealing with these problems has been discussed in 
Section 3. The first of these examples is inviscid, incompressible flow past NACA0012 aerofoil at 
0" angle of attack. The mesh used for this problem is the same as that used for the subsonic flow 
problem ( M  = 0.5) in Figure 2. Figure 22(a) shows the streamline contours at steady state and 
Figure 22(b) shows the pressure contours. The streamlines follow the same trend as predicted by 
the potential flow theory. A comparison of the coefficient of pressure distribution on the surface of 
the aerofoil with that obtained by potential flow theory is presented in Figure 22(c). 

5.9. Viscous, incompressible flow in a lid driven cavity 

This last example-the case of lid driven cavity-is considered as a standard test for viscous, 
incompressible flow. No slip condition is assumed on all the walls. A pressure datum p = 0 is 
specified at the mid-point of the bottom wall. The case of Re = 100 is considered. Figure 23(a) 
shows a nearly uniform mesh of 1310 nodes and 2482 elements used for this problem. Figures 
23(b), 23(c) and 23(d) show the pressure contours, velocity contours and the stream function 
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Figure 19. Problem of Figure 17 continued (density): (a) contours with linear triangular elements; (b) contours with 
quadratic triangular elements; (c) distribution along the section with linear triangular elements; (d) distribution along the 

section with quadratic triangular elements 
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Figure 20. Problem of Figure 17 continued (Mach number): (a) contours with linear triangular elements; (b) contours with 
quadratic triangular elements; (c) distribution along the section with linear triangular elements; (d) distribution along the 

section with quadratic triangular elements 
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Figure 21. Problem of Figure 17 continued (temperature) (a) contour with linear triangular elements; (b) contours with 
quadratic triangular elements; (c) distribution along the section with linear triangular elements; (d) distribution along the 

section with quadratic triangular elements 
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Figure 22. Inviscid incompressible flow past NACA0012 aerofoil with a = 0"; (a) streamline pattern; (b) pressure 
contours; (c) comparison of coefficient of pressure with potential flow theory 

contours, respectively. Figure 23(e) shows a comparison of horizontal velocity ( u l )  along the 
mid-vertical plane of the cavity with that of Ghia et al.' It appears that the present scheme yields 
reasonably good results for the case considered. 

The last two examples show that the fully explicit scheme can be applied to incompressible flow 
problems with success. 
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Figure 23. Lid-driven cavity problem (Re = 100): (a) mesh: no. of nodes = 1310, no. of elements = 2482; (b) pressure 
contours; (c) velocity vectors; (d) streamline pattern; (e) comparison of u1 velocity along mid-vertical plane 
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6.  CONCLUSIONS 

The explicit form of the algorithm suggested in Part I of this paper has been tested on a variety of 
problems with considerable success. It appears that it is valid throughout the flow range and that 
it yields an accuracy which is at least equal to the other algorithms presently used without 
introducing artificial parameters. Only in the case of fully incompressible, transient, flow the 
explicit scheme is not applicable although, of course, here the semi-explicit form is optimally used. 
We shall address this semi-explicit formulation in Part I11 of the paper in detail. 

Preliminary tests show that the use of higher-order interpolation is effective even in situations 
in which shocks develop. Certainly, for low Mach numbers such interpolation will be even more 
useful. 
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